• Kitl and Igf1 in MSCs at middle age correlates with aging-associated molecular programs in HSCs in individual mice.

  • Elevation of proinflammatory cytokines is not observed in steady-state middle-aged mice.

Abstract

Intrinsic molecular programs and extrinsic factors including proinflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in the hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single-cell transcriptomic profiles of hematopoietic and nonhematopoietic cell types in 5 young adult and 9 middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated, which extrinsic regulatory cell types and factors would predict the variance in these signatures between individual middle-aged mice. Decline in signaling mediated by adiponectin, kit ligand (KITL) and insulin-like growth factor 1 (IGF1) from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs was highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated proinflammatory cytokines including interleukin-1β (IL-1β), IL-6, tumor necrosis factor α and RANTES. In sum, we find that Kitl and Igf1 expression are coregulated and variable between individual mice at the middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.

1.
Periyasamy-Thandavan
S
,
Burke
J
,
Mendhe
B
, et al
.
MicroRNA-141-3p negatively modulates SDF-1 expression in age-dependent pathophysiology of human and murine bone marrow stromal cells
.
J Gerontol A Biol Sci Med Sci
.
2019
;
74
(
9
):
1368
-
1374
.
2.
Kusumbe
AP
,
Ramasamy
SK
,
Itkin
T
, et al
.
Age-dependent modulation of vascular niches for haematopoietic stem cells
.
Nature
.
2016
;
532
(
7599
):
380
-
384
.
3.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
):
1473
-
1482.e7
.
4.
Nicolas
V
,
Prewett
A
,
Bettica
P
, et al
.
Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging
.
J Clin Endocrinol Metab
.
1994
;
78
(
5
):
1011
-
1016
.
5.
Ding
L
,
Morrison
SJ
.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
6.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
7.
Matsuoka
S
,
Facchini
R
,
Luis
TC
, et al
.
Loss of endothelial membrane KIT ligand affects systemic KIT ligand levels but not bone marrow hematopoietic stem cells
.
Blood
.
2023
;
142
(
19
):
1622
-
1632
.
8.
Mitchell
CA
,
Verovskaya
EV
,
Calero-Nieto
FJ
, et al
.
Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing
.
Nat Cell Biol
.
2023
;
25
(
1
):
30
-
41
.
9.
Kovtonyuk
LV
,
Caiado
F
,
Garcia-Martin
S
, et al
.
IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
.
Blood
.
2022
;
139
(
1
):
44
-
58
.
10.
Zeng
X
,
Li
X
,
Li
X
, et al
.
Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation
.
Blood
.
2023
;
141
(
14
):
1691
-
1707
.
11.
Ferrucci
L
,
Kuchel
GA
.
Heterogeneity of aging: individual risk factors, mechanisms, patient priorities, and outcomes
.
J Am Geriatr Soc
.
2021
;
69
(
3
):
610
-
612
.
12.
Elliott
ML
,
Caspi
A
,
Houts
RM
, et al
.
Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy
.
Nat Aging
.
2021
;
1
(
3
):
295
-
308
.
13.
Tian
YE
,
Cropley
V
,
Maier
AB
,
Lautenschlager
NT
,
Breakspear
M
,
Zalesky
A
.
Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality
.
Nat Med
.
2023
;
29
(
5
):
1221
-
1231
.
14.
Liu
JL
,
Grinberg
A
,
Westphal
H
, et al
.
Insulin-like growth factor-I affects perinatal lethality and postnatal development in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice
.
Mol Endocrinol
.
1998
;
12
(
9
):
1452
-
1462
.
15.
DeFalco
J
,
Tomishima
M
,
Liu
H
, et al
.
Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus
.
Science
.
2001
;
291
(
5513
):
2608
-
2613
.
16.
Kawanami
A
,
Matsushita
T
,
Chan
YY
,
Murakami
S
.
Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum
.
Biochem Biophys Res Commun
.
2009
;
386
(
3
):
477
-
482
.
17.
Madisen
L
,
Zwingman
TA
,
Sunkin
SM
, et al
.
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
.
Nat Neurosci
.
2010
;
13
(
1
):
133
-
140
.
18.
Kokkaliaris
KD
,
Kunz
L
,
Cabezas-Wallscheid
N
, et al
.
Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations
.
Blood
.
2020
;
136
(
20
):
2296
-
2307
.
19.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
20.
Subramanian
A
,
Alperovich
M
,
Yang
Y
,
Li
B
.
Biology-inspired data-driven quality control for scientific discovery in single-cell transcriptomics
.
Genome Biol
.
2022
;
23
(
1
):
267
.
21.
dplyr
.
A grammar of data manipulation
. R package version1.1.4; 2023. Accessed 1 May 2024. https://dplyr.tidyverse.org/reference/dplyr-package.html.
22.
Baccin
C
,
Al-Sabah
J
,
Velten
L
, et al
.
Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization
.
Nat Cell Biol
.
2020
;
22
(
1
):
38
-
48
.
23.
Gao
S
,
Wu
Z
,
Kannan
J
, et al
.
Comparative transcriptomic analysis of the hematopoietic system between human and mouse by single cell RNA sequencing
.
Cells
.
2021
;
10
(
5
):
973
.
24.
Sommerkamp
P
,
Romero-Mulero
MC
,
Narr
A
, et al
.
Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells
.
Blood
.
2021
;
137
(
23
):
3218
-
3224
.
25.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
26.
Mootha
VK
,
Lindgren
CM
,
Eriksson
KF
, et al
.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
.
Nat Genet
.
2003
;
34
(
3
):
267
-
273
.
27.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
28.
Pietras
EM
,
Mirantes-Barbeito
C
,
Fong
S
, et al
.
Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal
.
Nat Cell Biol
.
2016
;
18
(
6
):
607
-
618
.
29.
Vanickova
K
,
Milosevic
M
,
Ribeiro Bas
I
, et al
.
Hematopoietic stem cells undergo a lymphoid to myeloid switch in early stages of emergency granulopoiesis
.
EMBO J
.
2023
;
42
(
23
):
e113527
.
30.
Pei
W
,
Shang
F
,
Wang
X
, et al
.
Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding
.
Cell Stem Cell
.
2020
;
27
(
3
):
383
-
395.e8
.
31.
Konturek-Ciesla
A
,
Olofzon
R
,
Kharazi
S
,
Bryder
D
.
Implications of stress-induced gene expression for hematopoietic stem cell aging studies
.
Nat Aging
.
2024
;
4
(
2
):
177
-
184
.
32.
Jin
S
,
Guerrero-Juarez
CF
,
Zhang
L
, et al
.
Inference and analysis of cell-cell communication using CellChat
.
Nat Commun
.
2021
;
12
(
1
):
1088
.
33.
Wickham
H
. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York
;
2016
.
34.
Langfelder
P
,
Horvath
S
.
WGCNA: an R package for weighted correlation network analysis
.
BMC Bioinformatics
.
2008
;
9
:
559
.
35.
Huang
S
,
Xu
L
,
Sun
Y
,
Wu
T
,
Wang
K
,
Li
G
.
An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow
.
J Orthop Translat
.
2015
;
3
(
1
):
26
-
33
.
36.
Flohr Svendsen
A
,
Yang
D
,
Kim
K
, et al
.
A comprehensive transcriptome signature of murine hematopoietic stem cell aging
.
Blood
.
2021
;
138
(
6
):
439
-
451
.
37.
Rossi
DJ
,
Bryder
D
,
Zahn
JM
, et al
.
Cell intrinsic alterations underlie hematopoietic stem cell aging
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
26
):
9194
-
9199
.
38.
Cho
RH
,
Sieburg
HB
,
Muller-Sieburg
CE
.
A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells
.
Blood
.
2008
;
111
(
12
):
5553
-
5561
.
39.
Dykstra
B
,
Olthof
S
,
Schreuder
J
,
Ritsema
M
,
de Haan
G
.
Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
.
J Exp Med
.
2011
;
208
(
13
):
2691
-
2703
.
40.
Grover
A
,
Sanjuan-Pla
A
,
Thongjuea
S
, et al
.
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells
.
Nat Commun
.
2016
;
7
:
11075
.
41.
Verovskaya
E
,
Broekhuis
MJ
,
Zwart
E
, et al
.
Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding
.
Blood
.
2013
;
122
(
4
):
523
-
532
.
42.
Yu
KR
,
Espinoza
DA
,
Wu
C
, et al
.
The impact of aging on primate hematopoiesis as interrogated by clonal tracking
.
Blood
.
2018
;
131
(
11
):
1195
-
1205
.
43.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
44.
Ng
SY
,
Yoshida
T
,
Zhang
J
,
Georgopoulos
K
.
Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells
.
Immunity
.
2009
;
30
(
4
):
493
-
507
.
45.
Zhang
X
,
Cao
D
,
Xu
L
, et al
.
Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation
.
Cell Stem Cell
.
2023
;
30
(
4
):
378
-
395.e8
.
46.
Ramalingam
P
,
Gutkin
MC
,
Poulos
MG
, et al
.
Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA damage response
.
Nat Commun
.
2023
;
14
(
1
):
2018
.
47.
Yang
D
,
de Haan
G
.
Inflammation and aging of hematopoietic stem cells in their niche
.
Cells
.
2021
;
10
(
8
):
1849
.
48.
Helbling
PM
,
Pineiro-Yanez
E
,
Gerosa
R
, et al
.
Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation
.
Cell Rep
.
2019
;
29
(
10
):
3313
-
3330.e4
.
49.
Barker
JE
.
Sl/Sld hematopoietic progenitors are deficient in situ
.
Exp Hematol
.
1994
;
22
(
2
):
174
-
177
.
50.
Yu
VW
,
Lymperi
S
,
Oki
T
, et al
.
Distinctive mesenchymal-parenchymal cell pairings govern B cell differentiation in the bone marrow
.
Stem Cell Reports
.
2016
;
7
(
2
):
220
-
235
.
51.
Porcher
L
,
Bruckmeier
S
,
Burbano
SD
, et al
.
Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions
.
J Neuroinflammation
.
2021
;
18
(
1
):
219
.
52.
Singer
K
,
Maley
N
,
Mergian
T
, et al
.
Differences in hematopoietic stem cells contribute to sexually dimorphic inflammatory responses to high fat diet-induced obesity
.
J Biol Chem
.
2015
;
290
(
21
):
13250
-
13262
.
53.
Reca
R
,
Cramer
D
,
Yan
J
, et al
.
A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins
.
Stem Cells
.
2007
;
25
(
12
):
3093
-
3100
.
54.
McGeer
PL
,
McGeer
EG
.
Inflammation and the degenerative diseases of aging
.
Ann N Y Acad Sci
.
2004
;
1035
:
104
-
116
.
You do not currently have access to this content.
Sign in via your Institution