Abstract

Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.

1.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
2.
Caiado
F
,
Pietras
EM
,
Manz
MG
.
Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection
.
J Exp Med
.
2021
;
218
(
7
):
e20201541
.
3.
Pietras
EM
.
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease
.
Blood
.
2017
;
130
(
15
):
1693
-
1698
.
4.
Trumpp
A
,
Essers
M
,
Wilson
A
.
Awakening dormant haematopoietic stem cells
.
Nat Rev Immunol
.
2010
;
10
(
3
):
201
-
209
.
5.
Medzhitov
R
.
Origin and physiological roles of inflammation
.
Nature
.
2008
;
454
(
7203
):
428
-
435
.
6.
Dinarello
CA
.
Overview of the IL-1 family in innate inflammation and acquired immunity
.
Immunol Rev
.
2018
;
281
(
1
):
8
-
27
.
7.
Garlanda
C
,
Dinarello
CA
,
Mantovani
A
.
The interleukin-1 family: back to the future
.
Immunity
.
2013
;
39
(
6
):
1003
-
1018
.
8.
Mantovani
A
,
Dinarello
CA
,
Molgora
M
,
Garlanda
C
.
Interleukin-1 and related cytokines in the regulation of inflammation and immunity
.
Immunity
.
2019
;
50
(
4
):
778
-
795
.
9.
Rider
P
,
Carmi
Y
,
Guttman
O
, et al
.
IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation
.
J Immunol
.
2011
;
187
(
9
):
4835
-
4843
.
10.
Boraschi
D
.
What is IL-1 for? the functions of interleukin-1 across evolution
.
Front Immunol
.
2022
;
13
:
872155
.
11.
Eislmayr
K
,
Bestehorn
A
,
Morelli
L
, et al
.
Nonredundancy of IL-1α and IL-1β is defined by distinct regulation of tissues orchestrating resistance versus tolerance to infection
.
Sci Adv
.
2022
;
8
(
9
):
eabj7293
.
12.
Weber
A
,
Wasiliew
P
,
Kracht
M
.
Interleukin-1 (IL-1) pathway
.
Sci Signal
.
2010
;
3
(
105
):
cm1
.
13.
Aksentijevich
I
,
Masters
SL
,
Ferguson
PJ
, et al
.
An autoinflammatory disease with deficiency of the interleukin-1–receptor antagonist
.
N Engl J Med
.
2009
;
360
(
23
):
2426
-
2437
.
14.
Wang
Y
,
Wang
J
,
Zheng
W
, et al
.
Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design
.
Immunity
.
2023
;
56
(
7
):
1485
-
1501.e7
.
15.
Franceschi
C
,
Campisi
J
.
Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases
.
J Gerontol A Biol Sci Med Sci
.
2014
;
69
(
suppl 1
):
S4
-
S9
.
16.
Kovtonyuk
LV
,
Fritsch
K
,
Feng
X
,
Manz
MG
,
Takizawa
H
.
Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment
.
Front Immunol
.
2016
;
7
:
502
.
17.
Teissier
T
,
Boulanger
E
,
Cox
LS
.
Interconnections between inflammageing and immunosenescence during ageing
.
Cells
.
2022
;
11
(
3
):
359
.
18.
Kovtonyuk
LV
,
Caiado
F
,
Garcia-Martin
S
, et al
.
IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
.
Blood
.
2022
;
139
(
1
):
44
-
58
.
19.
Mitchell
CA
,
Verovskaya
EV
,
Calero-Nieto
FJ
, et al
.
Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing
.
Nat Cell Biol
.
2023
;
25
(
1
):
30
-
41
.
20.
Frisch
BJ
,
Hoffman
CM
,
Latchney
SE
, et al
.
Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B
.
JCI Insight
.
2019
;
5
(
10
):
e124213
.
21.
Pioli
PD
,
Casero
D
,
Montecino-Rodriguez
E
,
Morrison
SL
,
Dorshkind
K
.
Plasma cells are obligate effectors of enhanced myelopoiesis in aging bone marrow
.
Immunity
.
2019
;
51
(
2
):
351
-
366.e6
.
22.
Luis
TC
,
Barkas
N
,
Carrelha
J
, et al
.
Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner
.
Nat Commun
.
2023
;
14
(
1
):
6062
.
23.
Li
S
,
Yao
JC
,
Oetjen
KA
, et al
.
IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function
.
Blood
.
2022
;
140
(
14
):
1607
-
1620
.
24.
Funk
MC
,
Zhou
J
,
Boutros
M
.
Ageing, metabolism and the intestine
.
EMBO Rep
.
2020
;
21
(
7
):
e50047
.
25.
Zeng
X
,
Li
X
,
Li
X
, et al
.
Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation
.
Blood
.
2023
;
141
(
14
):
1691
-
1707
.
26.
van der Meer
JW
,
Barza
M
,
Wolff
SM
,
Dinarello
CA
.
A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection
.
Proc Natl Acad Sci U S A
.
1988
;
85
(
5
):
1620
-
1623
.
27.
Damia
G
,
Komschlies
KL
,
Futami
H
, et al
.
Prevention of acute chemotherapy-induced death in mice by recombinant human interleukin 1: protection from hematological and nonhematological toxicities
.
Cancer Res
.
1992
;
52
(
15
):
4082
-
4089
.
28.
Pietras
EM
,
Mirantes-Barbeito
C
,
Fong
S
, et al
.
Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal
.
Nat Cell Biol
.
2016
;
18
(
6
):
607
-
618
.
29.
Caiado
F
,
Kovtonyuk
LV
,
Gonullu
NG
,
Fullin
J
,
Boettcher
S
,
Manz
MG
.
Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling
.
Blood
.
2023
;
141
(
8
):
886
-
903
.
30.
Villatoro
A
,
Cuminetti
V
,
Bernal
A
, et al
.
Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation
.
Nat Commun
.
2023
;
14
(
1
):
12
.
31.
Ueda
Y
,
Cain
DW
,
Kuraoka
M
,
Kondo
M
,
Kelsoe
G
.
IL-1R type I-dependent hemopoietic stem cell proliferation is necessary for inflammatory granulopoiesis and reactive neutrophilia
.
J Immunol
.
2009
;
182
(
10
):
6477
-
6484
.
32.
Weisser
M
,
Demel
UM
,
Stein
S
, et al
.
Hyperinflammation in patients with chronic granulomatous disease leads to impairment of hematopoietic stem cell functions
.
J Allergy Clin Immunol
.
2016
;
138
(
1
):
219
-
228.e9
.
33.
Rabe
JL
,
Hernandez
G
,
Chavez
JS
,
Mills
TS
,
Nerlov
C
,
Pietras
EM
.
CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions
.
Exp Hematol
.
2020
;
81
:
1
-
15.e6
.
34.
Chavez
JS
,
Rabe
JL
,
Loeffler
D
, et al
.
PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress
.
J Exp Med
.
2021
;
218
(
6
):
e20201169
.
35.
Staber
PB
,
Zhang
P
,
Ye
M
, et al
.
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells
.
Mol Cell
.
2013
;
49
(
5
):
934
-
946
.
36.
Kueh
HY
,
Champhekar
A
,
Nutt
SL
,
Elowitz
MB
,
Rothenberg
EV
.
Positive feedback between PU.1 and the cell cycle controls myeloid differentiation
.
Science
.
2013
;
341
(
6146
):
670
-
673
.
37.
Guillamot
M
,
Ouazia
D
,
Dolgalev
I
, et al
.
The E3 ubiquitin ligase SPOP controls resolution of systemic inflammation by triggering MYD88 degradation
.
Nat Immunol
.
2019
;
20
(
9
):
1196
-
1207
.
38.
Hernandez
G
,
Mills
TS
,
Rabe
JL
, et al
.
Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis
.
Haematologica
.
2020
;
105
(
3
):
585
-
597
.
39.
Al Zouabi
L
,
Bardin
AJ
.
Stem cell DNA damage and genome mutation in the context of aging and cancer initiation
.
Cold Spring Harb Perspect Biol
.
2020
;
12
(
10
):
a036210
.
40.
Osorio
FG
,
Rosendahl Huber
A
,
Oka
R
, et al
.
Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis
.
Cell Rep
.
2018
;
25
(
9
):
2308
-
2316.e4
.
41.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature
.
2018
;
561
(
7724
):
473
-
478
.
42.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
43.
Chin
DWL
,
Yoshizato
T
,
Virding Culleton
S
, et al
.
Aged healthy mice acquire clonal hematopoiesis mutations
.
Blood
.
2022
;
139
(
4
):
629
-
634
.
44.
Boettcher
S
,
Ebert
BL
.
Clonal hematopoiesis of indeterminate potential
.
J Clin Oncol
.
2019
;
37
(
5
):
419
-
422
.
45.
Steensma
DP
,
Bejar
R
,
Jaiswal
S
, et al
.
Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes
.
Blood
.
2015
;
126
(
1
):
9
-
16
.
46.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
47.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
48.
Xie
M
,
Lu
C
,
Wang
J
, et al
.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
.
Nat Med
.
2014
;
20
(
12
):
1472
-
1478
.
49.
Desai
P
,
Mencia-Trinchant
N
,
Savenkov
O
, et al
.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat Med
.
2018
;
24
(
7
):
1015
-
1023
.
50.
Abelson
S
,
Collord
G
,
Ng
SWK
, et al
.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
51.
Florez
MA
,
Tran
BT
,
Wathan
TK
,
DeGregori
J
,
Pietras
EM
,
King
KY
.
Clonal hematopoiesis: mutation-specific adaptation to environmental change
.
Cell Stem Cell
.
2022
;
29
(
6
):
882
-
904
.
52.
Young
AL
,
Challen
GA
,
Birmann
BM
,
Druley
TE
.
Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
.
Nat Commun
.
2016
;
7
:
12484
.
53.
Bick
AG
,
Weinstock
JS
,
Nandakumar
SK
, et al
.
Inherited causes of clonal haematopoiesis in 97,691 whole genomes
.
Nature
.
2020
;
586
(
7831
):
763
-
768
.
54.
Leoni
C
,
Montagner
S
,
Rinaldi
A
, et al
.
Dnmt3a restrains mast cell inflammatory responses
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
8
):
E1490
-
E1499
.
55.
Sano
S
,
Oshima
K
,
Wang
Y
,
Katanasaka
Y
,
Sano
M
,
Walsh
K
.
CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease
.
Circ Res
.
2018
;
123
(
3
):
335
-
341
.
56.
Sano
S
,
Oshima
K
,
Wang
Y
, et al
.
Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome
.
J Am Coll Cardiol
.
2018
;
71
(
8
):
875
-
886
.
57.
Fuster
JJ
,
MacLauchlan
S
,
Zuriaga
MA
, et al
.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
2017
;
355
(
6327
):
842
-
847
.
58.
Zhang
Q
,
Zhao
K
,
Shen
Q
, et al
.
Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6
.
Nature
.
2015
;
525
(
7569
):
389
-
393
.
59.
Cull
AH
,
Snetsinger
B
,
Buckstein
R
,
Wells
RA
,
Rauh
MJ
.
Tet2 restrains inflammatory gene expression in macrophages
.
Exp Hematol
.
2017
;
55
:
56
-
70.e13
.
60.
Wang
W
,
Liu
W
,
Fidler
T
, et al
.
Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice
.
Circ Res
.
2018
;
123
(
11
):
e35
-
e47
.
61.
Ito
S
,
D'Alessio
AC
,
Taranova
OV
,
Hong
K
,
Sowers
LC
,
Zhang
Y
.
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
.
Nature
.
2010
;
466
(
7310
):
1129
-
1133
.
62.
Nazha
A
,
Komrokji
R
,
Meggendorfer
M
, et al
.
Personalized prediction model to risk stratify patients with myelodysplastic syndromes
.
J Clin Oncol
.
2021
;
39
(
33
):
3737
-
3746
.
63.
Moran-Crusio
K
,
Reavie
L
,
Shih
A
, et al
.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
.
Cancer Cell
.
2011
;
20
(
1
):
11
-
24
.
64.
Ko
M
,
Bandukwala
HS
,
An
J
, et al
.
Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
35
):
14566
-
14571
.
65.
Svensson
EC
,
Madar
A
,
Campbell
CD
, et al
.
TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial
.
JAMA Cardiol
.
2022
;
7
(
5
):
521
-
528
.
66.
Burns
SS
,
Kumar
R
,
Pasupuleti
SK
,
So
K
,
Zhang
C
,
Kapur
R
.
Il-1r1 drives leukemogenesis induced by Tet2 loss
.
Leukemia
.
2022
;
36
(
10
):
2531
-
2534
.
67.
McClatchy
J
,
Strogantsev
R
,
Wolfe
E
, et al
.
Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells
.
Nat Commun
.
2023
;
14
(
1
):
8102
.
68.
Cordua
S
,
Kjaer
L
,
Skov
V
,
Pallisgaard
N
,
Hasselbalch
HC
,
Ellervik
C
.
Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population
.
Blood
.
2019
;
134
(
5
):
469
-
479
.
69.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
70.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med
.
2005
;
352
(
17
):
1779
-
1790
.
71.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell
.
2005
;
7
(
4
):
387
-
397
.
72.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
73.
Kent
DG
,
Li
J
,
Tanna
H
, et al
.
Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion
.
PLoS Biol
.
2013
;
11
(
6
):
e1001576
.
74.
Rai
S
,
Grockowiak
E
,
Hansen
N
, et al
.
Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm
.
Nat Commun
.
2022
;
13
(
1
):
5346
.
75.
Rahman
MF
,
Yang
Y
,
Le
BT
, et al
.
Interleukin-1 contributes to clonal expansion and progression of bone marrow fibrosis in JAK2V617F-induced myeloproliferative neoplasm
.
Nat Commun
.
2022
;
13
(
1
):
5347
.
76.
Rai
S
,
Zhang
Y
,
Grockowiak
E
, et al
.
IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells
.
Blood Adv
.
2024
;
8
(
5
):
1234
-
1249
.
77.
Arranz
L
,
Sánchez-Aguilera
A
,
Martín-Pérez
D
, et al
.
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms
.
Nature
.
2014
;
512
(
7512
):
78
-
81
.
78.
Gu
X
,
Ebrahem
Q
,
Mahfouz
RZ
, et al
.
Leukemogenic nucleophosmin mutation disrupts the transcription factor hub that regulates granulomonocytic fates
.
J Clin Invest
.
2018
;
128
(
10
):
4260
-
4279
.
79.
Guo
H
,
Ma
O
,
Speck
NA
,
Friedman
AD
.
Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis
.
Blood
.
2012
;
119
(
19
):
4408
-
4418
.
80.
Cancer Genome Atlas Research Network
,
Ley
TJ
,
Miller
C
, et al
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
81.
Pabst
T
,
Mueller
BU
,
Harakawa
N
, et al
.
AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia
.
Nat Med
.
2001
;
7
(
4
):
444
-
451
.
82.
Perrotti
D
,
Cesi
V
,
Trotta
R
, et al
.
BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2
.
Nat Genet
.
2002
;
30
(
1
):
48
-
58
.
83.
Zheng
R
,
Friedman
AD
,
Levis
M
,
Li
L
,
Weir
EG
,
Small
D
.
Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression
.
Blood
.
2004
;
103
(
5
):
1883
-
1890
.
84.
Higa
KC
,
Goodspeed
A
,
Chavez
JS
, et al
.
Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors
.
J Exp Med
.
2021
;
218
(
6
):
e20200560
.
85.
Hormaechea-Agulla
D
,
Matatall
KA
,
Le
DT
, et al
.
Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling
.
Cell Stem Cell
.
2021
;
28
(
8
):
1428
-
1442.e6
.
86.
Kristinsson
SY
,
Björkholm
M
,
Hultcrantz
M
,
Derolf
ÅR
,
Landgren
O
,
Goldin
LR
.
Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes
.
J Clin Oncol
.
2011
;
29
(
21
):
2897
-
2903
.
87.
Kristinsson
SY
,
Landgren
O
,
Samuelsson
J
,
Björkholm
M
,
Goldin
LR
.
Autoimmunity and the risk of myeloproliferative neoplasms
.
Haematologica
.
2010
;
95
(
7
):
1216
-
1220
.
88.
Arranz
L
,
Arriero
MdM
,
Villatoro
A
.
Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications
.
Blood Rev
.
2017
;
31
(
5
):
306
-
317
.
89.
Ren
R
.
Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia
.
Nat Rev Cancer
.
2005
;
5
(
3
):
172
-
183
.
90.
Wetzler
M
,
Kurzrock
R
,
Estrov
Z
, et al
.
Altered levels of interleukin-1β and interleukin-1 receptor antagonist in chronic myelogenous leukemia: Clinical and prognostic correlates
.
Blood
.
1994
;
84
(
9
):
3142
-
3147
.
91.
Zhang
B
,
Ho
YW
,
Huang
Q
, et al
.
Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia
.
Cancer Cell
.
2012
;
21
(
4
):
577
-
592
.
92.
Zhao
K
,
Yin
LL
,
Zhao
DM
, et al
.
IL1RAP as a surface marker for leukemia stem cells is related to clinical phase of chronic myeloid leukemia patients
.
Int J Clin Exp Med
.
2014
;
7
(
12
):
4787
-
4798
.
93.
Järås
M
,
Johnels
P
,
Hansen
N
, et al
.
Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
37
):
16280
-
16285
.
94.
Ågerstam
H
,
Hansen
N
,
von Palffy
S
, et al
.
IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models
.
Blood
.
2016
;
128
(
23
):
2683
-
2693
.
95.
Lee
CR
,
Kang
JA
,
Kim
HE
,
Choi
Y
,
Yang
T
,
Park
SG
.
Secretion of IL-1β from imatinib-resistant chronic myeloid leukemia cells contributes to BCR-ABL mutation-independent imatinib resistance
.
FEBS Lett
.
2016
;
590
(
3
):
358
-
368
.
96.
Estrov
Z
,
Kurzrock
R
,
Wetzler
M
, et al
.
Suppression of chronic myelogenous leukemia colony growth by interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptors: a novel application for inhibitors of IL-1 activity
.
Blood
.
1991
;
78
(
6
):
1476
-
1484
.
97.
Zhang
B
,
Chu
S
,
Agarwal
P
, et al
.
Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells
.
Blood
.
2016
;
128
(
23
):
2671
-
2682
.
98.
Skoda
RC
,
Duek
A
,
Grisouard
J
.
Pathogenesis of myeloproliferative neoplasms
.
Exp Hematol
.
2015
;
43
(
8
):
599
-
608
.
99.
Vaidya
R
,
Gangat
N
,
Jimma
T
, et al
.
Plasma cytokines in polycythemia vera: Phenotypic correlates, prognostic relevance, and comparison with myelofibrosis
.
Am J Hematol
.
2012
;
87
(
11
):
1003
-
1005
.
100.
Sallman
DA
,
List
A
.
The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes
.
Blood
.
2019
;
133
(
10
):
1039
-
1048
.
101.
Basiorka
AA
,
McGraw
KL
,
Eksioglu
EA
, et al
.
The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype
.
Blood
.
2016
;
128
(
25
):
2960
-
2975
.
102.
Barreyro
L
,
Will
B
,
Bartholdy
B
, et al
.
Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS
.
Blood
.
2012
;
120
(
6
):
1290
-
1298
.
103.
Rhyasen
GW
,
Bolanos
L
,
Fang
J
, et al
.
Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome
.
Cancer Cell
.
2013
;
24
(
1
):
90
-
104
.
104.
Schneider
M
,
Rolfs
C
,
Trumpp
M
, et al
.
Activation of distinct inflammatory pathways in subgroups of LR-MDS
.
Leukemia
.
2023
;
37
(
8
):
1709
-
1718
.
105.
Preisler
H
,
Raza
A
,
Kukla
C
,
Larson
R
,
Goldberg
J
,
Browman
G
.
Interleukin-1 beta expression and treatment outcome in acute myelogenous leukemia [letter]
.
Blood
.
1991
;
78
(
3
):
849
-
850
.
106.
Grauers Wiktorin
H
,
Aydin
E
,
Christenson
K
, et al
.
Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance
.
Oncoimmunology
.
2021
;
10
(
1
):
1944538
.
107.
Hoang
T
,
Haman
A
,
Goncalves
O
, et al
.
Interleukin 1 enhances growth factor-dependent proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hemopoietic precursors
.
J Exp Med
.
1988
;
168
(
2
):
463
-
474
.
108.
Griffin
J
,
Rambaldi
A
,
Vellenga
E
,
Young
DC
,
Ostapovicz
D
,
Cannistra
SA
.
Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors
.
Blood
.
1987
;
70
(
4
):
1218
-
1221
.
109.
Cozzolino
F
,
Rubartelli
A
,
Aldinucci
D
, et al
.
Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells
.
Proc Natl Acad Sci U S A
.
1989
;
86
(
7
):
2369
-
2373
.
110.
Turzanski
J
,
Grundy
M
,
Russell
NH
,
Pallis
M
.
Interleukin-1beta maintains an apoptosis-resistant phenotype in the blast cells of acute myeloid leukaemia via multiple pathways
.
Leukemia
.
2004
;
18
(
10
):
1662
-
1670
.
111.
Hosseini
MM
,
Kurtz
SE
,
Abdelhamed
S
, et al
.
Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes
.
Leukemia
.
2018
;
32
(
11
):
2374
-
2387
.
112.
Carey
A
,
Edwards
DK
,
Eide
CA
, et al
.
Identification of Interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia
.
Cell Rep
.
2017
;
18
(
13
):
3204
-
3218
.
113.
Mitchell
K
,
Barreyro
L
,
Todorova
TI
, et al
.
IL1RAP potentiates multiple oncogenic signaling pathways in AML
.
J Exp Med
.
2018
;
215
(
6
):
1709
-
1727
.
114.
De Boer
B
,
Sheveleva
S
,
Apelt
K
, et al
.
The IL1-IL1RAP axis plays an important role in the inflammatory leukemic niche that favors acute myeloid leukemia proliferation over normal hematopoiesis
.
Haematologica
.
2021
;
106
(
12
):
3067
-
3078
.
115.
Ågerstam
H
,
Karlsson
C
,
Hansen
N
, et al
.
Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
34
):
10786
-
10791
.
116.
Trad
R
,
Warda
W
,
Alcazer
V
, et al
.
Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia
.
J Immunother Cancer
.
2022
;
10
(
7
):
e004222
.
117.
Fidler
TP
,
Xue
C
,
Yalcinkaya
M
, et al
.
The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis
.
Nature
.
2021
;
592
(
7853
):
296
-
301
.
118.
Rauch
PJ
,
Gopakumar
J
,
Silver
AJ
, et al
.
Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes
.
Nat Cardiovasc Res
.
2023
;
2
(
9
):
805
-
818
.
119.
Kessler
MD
,
Damask
A
,
O'Keeffe
S
, et al
.
Common and rare variant associations with clonal haematopoiesis phenotypes
.
Nature
.
2022
;
612
(
7939
):
301
-
309
.
You do not currently have access to this content.
Sign in via your Institution