• Loss of DNTT diminished B-ALL sensitivity to inotuzumab ozogamicin by modulating the cellular DNA damage response.

  • B-ALL blasts with low DNTT expression showed resistance to treatment with inotuzumab ozogamicin in vivo.

Abstract

Inotuzumab ozogamicin (InO) is an antibody-calicheamicin conjugate with striking efficacy in B-cell acute lymphoblastic leukemia (B-ALL). However, there is wide interpatient variability in treatment response, and the genetic basis of this variation remains largely unknown. Using a genome-wide CRISPR screen, we discovered that the loss of DNA nucleotidylexotransferase (DNTT) is a primary driver of InO resistance. Mechanistically, the downregulation of DNTT attenuated InO–induced DNA damage response, cell cycle arrest, and mitochondrial apoptotic priming, thereby ultimately leading to leukemia resistance to InO. Ex vivo leukemia InO sensitivity was highly associated with DNTT expression in ALL blasts with substantial intraleukemia heterogeneity as revealed by single-cell RNA sequencing. Among patients with B-ALL enrolled in the Children's Oncology Group trial AALL1621, we observed consistent DNTT downregulation in residual blasts following InO treatment. The selection of DNTT-low blasts by InO therapy was also recapitulated in vivo using patient-derived xenograft models. Collectively, our data indicate that DNTT is a key regulator of calicheamicin response in leukemia and thus a potential biomarker for individualizing InO therapy in B-ALL.

1.
DiJoseph
JF
,
Popplewell
A
,
Tickle
S
, et al
.
Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22
.
Cancer Immunol Immunother
.
2005
;
54
(
1
):
11
-
24
.
2.
Shah
NN
,
Stevenson
MS
,
Yuan
CM
, et al
.
Characterization of CD22 expression in acute lymphoblastic leukemia
.
Pediatr Blood Cancer
.
2015
;
62
(
6
):
964
-
969
.
3.
Kantarjian
HM
,
Stock
W
,
Cassaday
RD
, et al
.
Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE Trial: CD22 pharmacodynamics, efficacy, and safety by baseline CD22
.
Clin Cancer Res
.
2021
;
27
(
10
):
2742
-
2754
.
4.
Elmroth
K
,
Nygren
J
,
Martensson
S
,
Ismail
IH
,
Hammarsten
O
.
Cleavage of cellular DNA by calicheamicin gamma1
.
DNA Repair (Amst)
.
2003
;
2
(
4
):
363
-
374
.
5.
Dedon
PC
,
Salzberg
AA
,
Xu
J
.
Exclusive production of bistranded DNA damage by calicheamicin
.
Biochemistry
.
1993
;
32
(
14
):
3617
-
3622
.
6.
Zein
N
,
Sinha
AM
,
McGahren
WJ
,
Ellestad
GA
.
Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically
.
Science
.
1988
;
240
(
4856
):
1198
-
1201
.
7.
DiJoseph
JF
,
Armellino
DC
,
Boghaert
ER
, et al
.
Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies
.
Blood
.
2004
;
103
(
5
):
1807
-
1814
.
8.
Kantarjian
HM
,
DeAngelo
DJ
,
Stelljes
M
, et al
.
Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia
.
N Engl J Med
.
2016
;
375
(
8
):
740
-
753
.
9.
O'Brien
MM
,
Ji
L
,
Shah
NN
, et al
.
Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: Children's Oncology Group protocol AALL1621
.
J Clin Oncol
.
2022
;
40
(
9
):
956
-
967
.
10.
Pennesi
E
,
Michels
N
,
Brivio
E
, et al
.
Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial
.
Leukemia
.
2022
;
36
(
6
):
1516
-
1524
.
11.
Jabbour
EJ
,
Sasaki
K
,
Ravandi
F
, et al
.
Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: a propensity score analysis
.
Cancer
.
2019
;
125
(
15
):
2579
-
2586
.
12.
Fracchiolla
NS
,
Sciume
M
,
Papayannidis
C
, et al
.
Blinatumomab and inotuzumab ozogamicin sequential use for the treatment of relapsed/refractory acute lymphoblastic leukemia: a real-life campus all study
.
Cancers (Basel)
.
2023
;
15
(
18
):
4623
.
13.
Jain
N
,
Maiti
A
,
Ravandi
F
, et al
.
Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia
.
Am J Hematol
.
2021
;
96
(
8
):
1000
-
1007
.
14.
Stelljes
M
,
Raffel
S
,
Alakel
N
, et al
.
Inotuzumab ozogamicin as induction therapy for patients older than 55 years with Philadelphia chromosome-negative B-precursor ALL
.
J Clin Oncol
.
2024
;
42
(
3
):
273
-
282
.
15.
Short
NJ
,
Jabbour
E
,
Jamison
T
, et al
.
Dose-dense mini-hyper-CVD, inotuzumab ozogamicin and blinatumomab achieves rapid MRD-negativity in Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia
.
Clin Lymphoma Myeloma Leuk
.
2024
;
24
(
4
):
e168
-
e173
.
16.
Kayser
S
,
Sartor
C
,
Luskin
MR
, et al
.
Outcome of relapsed or refractory acute B-lymphoblastic leukemia patients and BCR-ABL-positive blast cell crisis of B-lymphoid lineage with extramedullary disease receiving inotuzumab ozogamicin
.
Haematologica
.
2022
;
107
(
9
):
2064
-
2071
.
17.
Stock
W
,
Martinelli
G
,
Stelljes
M
, et al
.
Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia
.
Cancer
.
2021
;
127
(
6
):
905
-
913
.
18.
Rubinstein
JD
,
O'Brien
MM
.
Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations
.
Front Immunol
.
2023
;
14
:
1237738
.
19.
Inaba
H
,
Pui
CH
.
Immunotherapy in pediatric acute lymphoblastic leukemia
.
Cancer Metastasis Rev
.
2019
;
38
(
4
):
595
-
610
.
20.
Zheng
S
,
Gillespie
E
,
Naqvi
AS
, et al
.
Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies
.
Blood Cancer Discov
.
2022
;
3
(
2
):
103
-
115
.
21.
Ryland
GL
,
Barraclough
A
,
Fong
CY
, et al
.
Inotuzumab ozogamicin resistance associated with a novel CD22 truncating mutation in a case of B-acute lymphoblastic leukaemia
.
Br J Haematol
.
2020
;
191
(
1
):
123
-
126
.
22.
Zhao
Y
,
Short
NJ
,
Kantarjian
HM
, et al
.
Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL
.
Blood
.
2024
;
144
(
1
):
61
-
73
.
23.
Reinert
J
,
Beitzen-Heineke
A
,
Wethmar
K
,
Stelljes
M
,
Fiedler
W
,
Schwartz
S
.
Loss of CD22 expression and expansion of a CD22(dim) subpopulation in adults with relapsed/refractory B-lymphoblastic leukaemia after treatment with inotuzumab-ozogamicin
.
Ann Hematol
.
2021
;
100
(
11
):
2727
-
2732
.
24.
Paul
MR
,
Wong
V
,
Aristizabal
P
,
Kuo
DJ
.
Treatment of recurrent refractory pediatric pre-B acute lymphoblastic leukemia using inotuzumab ozogamicin monotherapy resulting in CD22 antigen expression loss as a mechanism of therapy resistance
.
J Pediatr Hematol Oncol
.
2019
;
41
(
8
):
e546
-
e549
.
25.
Wintering
A
,
Ishiyama
K
,
Tamaki
S
, et al
.
CD22low/Bcl-2high expression identifies poor response to inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia
.
Blood Adv
.
2023
;
7
(
2
):
251
-
255
.
26.
Jabbour
E
,
Gokbuget
N
,
Advani
A
, et al
.
Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial
.
Leuk Res
.
2020
;
88
:
106283
.
27.
Godwin
CD
,
Bates
OM
,
Jean
SR
, et al
.
Anti-apoptotic BCL-2 family proteins confer resistance to calicheamicin-based antibody-drug conjugate therapy of acute leukemia
.
Leuk Lymphoma
.
2020
;
61
(
12
):
2990
-
2994
.
28.
Tirro
E
,
Massimino
M
,
Romano
C
, et al
.
Chk1 inhibition restores inotuzumab ozogamicin citotoxicity in CD22-positive cells expressing mutant p53
.
Front Oncol
.
2019
;
9
:
57
.
29.
Gocho
Y
,
Liu
J
,
Hu
J
, et al
.
Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia
.
Nat Cancer
.
2021
;
2
(
3
):
284
-
299
.
30.
Sanjana
NE
,
Shalem
O
,
Zhang
F
.
Improved vectors and genome-wide libraries for CRISPR screening
.
Nat Methods
.
2014
;
11
(
8
):
783
-
784
.
31.
Autry
RJ
,
Paugh
SW
,
Carter
R
, et al
.
Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia
.
Nat Cancer
.
2020
;
1
(
3
):
329
-
344
.
32.
Joung
J
,
Konermann
S
,
Gootenberg
JS
, et al
.
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening
.
Nat Protoc
.
2017
;
12
(
4
):
828
-
863
.
33.
Lee
SHR
,
Yang
W
,
Gocho
Y
, et al
.
Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response
.
Nat Med
.
2023
;
29
(
1
):
170
-
179
.
34.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
35.
Frankish
A
,
Diekhans
M
,
Jungreis
I
, et al
.
Gencode 2021
.
Nucleic Acids Res
.
2021
;
49
(
D1
):
D916
-
D923
.
36.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
37.
Haag
P
,
Viktorsson
K
,
Lindberg
ML
,
Kanter
L
,
Lewensohn
R
,
Stenke
L
.
Deficient activation of Bak and Bax confers resistance to gemtuzumab ozogamicin-induced apoptotic cell death in AML
.
Exp Hematol
.
2009
;
37
(
6
):
755
-
766
.
38.
Loc'h
J
,
Delarue
M
.
Terminal deoxynucleotidyltransferase: the story of an untemplated DNA polymerase capable of DNA bridging and templated synthesis across strands
.
Curr Opin Struct Biol
.
2018
;
53
:
22
-
31
.
39.
Sarosiek
KA
,
Chi
X
,
Bachman
JA
, et al
.
BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response
.
Mol Cell
.
2013
;
51
(
6
):
751
-
765
.
40.
Kirchhoff
H
,
Karsli
U
,
Schoenherr
C
, et al
.
Venetoclax and dexamethasone synergize with inotuzumab ozogamicin-induced DNA damage signaling in B-lineage ALL
.
Blood
.
2021
;
137
(
19
):
2657
-
2661
.
41.
Klairmont
MM
,
Zhou
Y
,
Cheng
C
, et al
.
Clinicopathologic and prognostic features of TdT-negative pediatric B-lymphoblastic leukemia
.
Mod Pathol
.
2021
;
34
(
11
):
2050
-
2054
.
42.
Vacek
M
,
Zarraga Vargas
LC
,
Gonzalez Dominguez
E
, et al
.
Increased incidence of TdT-negative pre-B acute lymphoblastic leukemia associated with poor prognostic features among Mexican children in central Mexico
.
J Pediatr Hematol Oncol
.
2024
;
46
(
2
):
e131
-
e136
.
43.
Zhou
Y
,
Fan
X
,
Routbort
M
, et al
.
Absence of terminal deoxynucleotidyl transferase expression identifies a subset of high-risk adult T-lymphoblastic leukemia/lymphoma
.
Mod Pathol
.
2013
;
26
(
10
):
1338
-
1345
.
44.
Xiao
H
,
Wang
S
,
Tang
Y
, et al
.
Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance
.
Int J Cancer
.
2023
;
152
(
11
):
2383
-
2395
.
45.
Shurin
SB
,
Scillian
JJ
.
Absence of terminal transferase may predict failure of remission induction in childhood ALL
.
Blood
.
1983
;
62
(
1
):
81
-
84
.
46.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
47.
Hystad
ME
,
Myklebust
JH
,
Bo
TH
, et al
.
Characterization of early stages of human B cell development by gene expression profiling
.
J Immunol
.
2007
;
179
(
6
):
3662
-
3671
.
You do not currently have access to this content.
Sign in via your Institution