• A new clinical risk model in CMML, acronymized to BLAST, is easy to implement, globally applicable, and molecularly adaptive.

  • Molecular information helps identify BLAST low- or intermediate-risk patients in whom allogeneic transplant is advised earlier than later.

Abstract

We sought to develop a survival model in chronic myelomonocytic leukemia (CMML) that is primarily based on clinical variables and examine additional impact from mutations and karyotype. A total of 457 molecularly annotated patients were considered. Multivariable analysis identified circulating blasts ≥2% (1 point), leukocytes ≥13 × 109/L (1 point), and severe (2 points) or moderate (1 point) anemia as preferred risk variables in developing a clinical risk stratification tool for overall survival (OS), acronymized to “BLAST”: low risk (0 points; median, 63 months); intermediate risk (1 point; median, 28 months; hazard ratio [HR], 2.2; 95% confidence interval [CI], 1.6-3.0), and high risk (2-4 points; median, 13 months; HR, 5.4; 95% CI, 4.1-7.3); the corresponding 3/5-year OS rates were 68%/53%, 43%/18%, and 12%/1%. BLAST model performance (area under the receiver operating characteristic curve [AUC] 0.77/0.85 at 3/5 years) was shown to be comparable to that of the molecular CMML-specific prognostic scoring system (AUC 0.73/0.75) and the international prognostic scoring system-molecular (AUC 0.73/0.74). Multivariable analysis of mutations and karyotype identified PHF6MUT and TET2MUT as being “favorable” and DNMT3AMUT, U2AF1MUT, BCORMUT, SETBP1MUT, ASXL1MUT, NRASMUT, PTPN11MUT, RUNX1MUT, TP53MUT, and adverse karyotype, “unfavorable.” Molecular information was subsequently encoded in a combined clinical-molecular risk model (BLAST-mol; AUC 0.80/0.86 at 3/5 years) that included the aforementioned BLAST clinical risk variables and a 3-tiered molecular risk score. BLAST and BLAST-mol were subsequently validated by 2 separate external cohorts. Independent risk factors for blast transformation included DNMT3AMUT, ASXL1MUT, PHF6WT, leukocytes ≥13 × 109/L, and ≥2% circulating or ≥10% bone marrow blasts. The current study proposes an easy-to-implement, globally applicable, and molecularly adaptive risk model for CMML.

1.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus Classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
2.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
3.
Patnaik
MM
,
Tefferi
A
.
Chronic myelomonocytic leukemia: 2024 update on diagnosis, risk stratification and management
.
Am J Hematol
.
2024
;
99
(
6
):
1142
-
1165
.
4.
Natu
AA
,
Gupta
I
,
Leung
N
,
Alexander
MP
,
Patnaik
MM
.
Clonal monocytosis of renal significance
.
Kidney Int
.
2024
;
106
(
6
):
1062
-
1071
.
5.
Padron
E
,
Garcia-Manero
G
,
Patnaik
MM
, et al
.
An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies
.
Blood Cancer J
.
2015
;
5
(
7
):
e333
.
6.
Patnaik
MM
,
Wassie
EA
,
Padron
E
, et al
.
Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome
.
Blood Cancer J
.
2015
;
5
(
2
):
e280
.
7.
Onida
F
,
Kantarjian
HM
,
Smith
TL
, et al
.
Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients
.
Blood
.
2002
;
99
(
3
):
840
-
849
.
8.
Germing
U
,
Kündgen
A
,
Gattermann
N
.
Risk assessment in chronic myelomonocytic leukemia (CMML)
.
Leuk Lymphoma
.
2004
;
45
(
7
):
1311
-
1318
.
9.
Such
E
,
Germing
U
,
Malcovati
L
, et al
.
Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia
.
Blood
.
2013
;
121
(
15
):
3005
-
3015
.
10.
Itzykson
R
,
Kosmider
O
,
Renneville
A
, et al
.
Prognostic score including gene mutations in chronic myelomonocytic leukemia
.
J Clin Oncol
.
2013
;
31
(
19
):
2428
-
2436
.
11.
Patnaik
MM
,
Padron
E
,
LaBorde
RR
, et al
.
Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes
.
Leukemia
.
2013
;
27
(
7
):
1504
-
1510
.
12.
Patnaik
MM
,
Itzykson
R
,
Lasho
TL
, et al
.
ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients
.
Leukemia
.
2014
;
28
(
11
):
2206
-
2212
.
13.
Elena
C
,
Gallì
A
,
Such
E
, et al
.
Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia
.
Blood
.
2016
;
128
(
10
):
1408
-
1417
.
14.
Patnaik
MM
,
Barraco
D
,
Lasho
TL
, et al
.
DNMT3A mutations are associated with inferior overall and leukemia-free survival in chronic myelomonocytic leukemia
.
Am J Hematol
.
2017
;
92
(
1
):
56
-
61
.
15.
Tefferi
A
,
Fathima
S
,
Alsugair
AKA
, et al
.
PHF6 mutations in chronic myelomonocytic leukemia identify a unique subset of patients with distinct phenotype and superior prognosis
.
Am J Hematol
.
2024
;
99
(
12
):
2321
-
2327
.
16.
McGowan-Jordan
J
,
Hastings
RJ
,
Moore
S
. ISCN 2020: An International System for Human Cytogenomic Nomenclature.
Karger
;
2020
:
503
.
17.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular international prognostic scoring system for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):
EVIDoa2200008
.
18.
Tefferi
A
,
Guglielmelli
P
,
Lasho
TL
, et al
.
MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
17
):
1769
-
1770
.
19.
Merlevede
J
,
Droin
N
,
Qin
T
, et al
.
Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents
.
Nat Commun
.
2016
;
7
:
10767
.
20.
Itzykson
R
,
Santini
V
,
Thepot
S
, et al
.
Decitabine versus hydroxyurea for advanced proliferative chronic myelomonocytic leukemia: results of a randomized phase III trial within the EMSCO network
.
J Clin Oncol
.
2023
;
41
(
10
):
1888
-
1897
.
21.
Gagelmann
N
,
Bogdanov
R
,
Stölzel
F
, et al
.
Long-term survival benefit after allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia
.
Transpl Cell Ther
.
2021
;
27
(
1
):
95.e1
-
95.e4
.
22.
Robin
M
,
de Wreede
LC
,
Padron
E
, et al
.
Role of allogeneic transplantation in chronic myelomonocytic leukemia: an international collaborative analysis
.
Blood
.
2022
;
140
(
12
):
1408
-
1418
.
23.
Pophali
P
,
Matin
A
,
Mangaonkar
AA
, et al
.
Prognostic impact and timing considerations for allogeneic hematopoietic stem cell transplantation in chronic myelomonocytic leukemia
.
Blood Cancer J
.
2020
;
10
(
11
):
121
.
24.
Worsley
A
,
Oscier
DG
,
Stevens
J
, et al
.
Prognostic features of chronic myelomonocytic leukaemia: a modified Bournemouth score gives the best prediction of survival
.
Br J Haematol
.
1988
;
68
(
1
):
17
-
21
.
25.
Bennett
JM
,
Catovsky
D
,
Daniel
MT
, et al
.
The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia: proposals by the French-American-British Cooperative Leukaemia Group
.
Br J Haematol
.
1994
;
87
(
4
):
746
-
754
.
26.
Carr
RM
,
Vorobyev
D
,
Lasho
T
, et al
.
RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis
.
Nat Commun
.
2021
;
12
(
1
):
2901
.
You do not currently have access to this content.
Sign in via your Institution