• A single-chain CD38 T-cell engager targets CD38-negative LSCs activated by IFN-γ and induces CD38 expression on AML blasts.

  • CD38 T-cell engager activates T cells against autologous leukemia cells and in AML mouse models.

Abstract

Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ–induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.

1.
Kantarjian
H
.
Acute myeloid leukemia-major progress over four decades and glimpses into the future
.
Am J Hematol
.
2016
;
91
(
1
):
131
-
145
.
2.
Shallis
RM
,
Wang
R
,
Davidoff
A
,
Ma
X
,
Zeidan
AM
.
Epidemiology of acute myeloid leukemia: recent progress and enduring challenges
.
Blood Rev
.
2019
;
36
:
70
-
87
.
3.
Mims
AS
,
Blum
W
.
Progress in the problem of relapsed or refractory acute myeloid leukemia
.
Curr Opin Hematol
.
2019
;
26
(
2
):
88
-
95
.
4.
Vasu
S
,
Kohlschmidt
J
,
Mrózek
K
, et al
.
Ten-year outcome of patients with acute myeloid leukemia not treated with allogeneic transplantation in first complete remission
.
Blood Adv
.
2018
;
2
(
13
):
1645
-
1650
.
5.
Gupta
V
,
Tallman
MS
,
Weisdorf
DJ
.
Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns
.
Blood
.
2011
;
117
(
8
):
2307
-
2318
.
6.
Barrett
AJ
,
Battiwalla
M
.
Relapse after allogeneic stem cell transplantation
.
Expert Rev Hematol
.
2010
;
3
(
4
):
429
-
441
.
7.
Wiseman
DH
,
Greystoke
BF
,
Somervaille
TC
.
The variety of leukemic stem cells in myeloid malignancy
.
Oncogene
.
2014
;
33
(
24
):
3091
-
3098
.
8.
Thomas
D
,
Majeti
R
.
Biology and relevance of human acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1577
-
1585
.
9.
van Gils
N
,
Denkers
F
,
Smit
L
.
Escape from treatment; the different faces of leukemic stem cells and therapy resistance in acute myeloid leukemia
.
Front Oncol
.
2021
;
11
:
659253
.
10.
Wang
X
,
Huang
S
,
Chen
JL
.
Understanding of leukemic stem cells and their clinical implications
.
Mol Cancer
.
2017
;
16
(
1
):
2
.
11.
Villatoro
A
,
Konieczny
J
,
Cuminetti
V
,
Arranz
L
.
Leukemia stem cell release from the stem cell niche to treat acute myeloid leukemia
.
Front Cell Dev Biol
.
2020
;
8
:
607
.
12.
Suryadevara
CM
,
Gedeon
PC
,
Sanchez-Perez
L
, et al
.
Are BiTEs the "missing link" in cancer therapy?
.
Oncoimmunology
.
2015
;
4
(
6
):
e1008339
.
13.
Guy
DG
,
Uy
GL
.
Bispecific antibodies for the treatment of acute myeloid leukemia
.
Curr Hematol Malig Rep
.
2018
;
13
(
6
):
417
-
425
.
14.
Ehninger
A
,
Kramer
M
,
Röllig
C
, et al
.
Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia
.
Blood Cancer J
.
2014
;
4
(
6
):
e218
.
15.
Morandi
F
,
Horenstein
AL
,
Costa
F
,
Giuliani
N
,
Pistoia
V
,
Malavasi
F
.
CD38: a target for immunotherapeutic approaches in multiple myeloma
.
Front Immunol
.
2018
;
9
:
2722
.
16.
Jelinek
T
,
Mihalyova
J
,
Hajek
R
.
CD38 targeted treatment for multiple myeloma
.
Vnitr Lek
.
2018
;
64
(
10
):
939
-
948
.
17.
Bride
KL
,
Vincent
TL
,
Im
SY
, et al
.
Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia
.
Blood
.
2018
;
131
(
9
):
995
-
999
.
18.
Fatehchand
K
,
McMichael
EL
,
Reader
BF
, et al
.
Interferon-gamma promotes antibody-mediated fratricide of acute myeloid leukemia cells
.
J Biol Chem
.
2016
;
291
(
49
):
25656
-
25666
.
19.
Bürgler
S
,
Gimeno
A
,
Parente-Ribes
A
, et al
.
Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-γ by a T-bet-dependent mechanism
.
J Immunol
.
2015
;
194
(
2
):
827
-
835
.
20.
Ogiya
D
,
Liu
J
,
Ohguchi
H
, et al
.
The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications
.
Blood
.
2020
;
136
(
20
):
2334
-
2345
.
21.
Bauvois
B
,
Durant
L
,
Laboureau
J
, et al
.
Upregulation of CD38 gene expression in leukemic B cells by interferon types I and II
.
J Interferon Cytokine Res
.
1999
;
19
(
9
):
1059
-
1066
.
22.
Angelicola
S
,
Ruzzi
F
,
Landuzzi
L
, et al
.
IFN-γ and CD38 in hyperprogressive cancer development
.
Cancers (Basel)
.
2021
;
13
(
2
):
309
.
23.
Rosain
J
,
Neehus
AL
,
Manry
J
, et al
.
Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria
.
Cell
.
2023
;
186
(
3
):
621
-
645.e33
.
24.
Wagner
S
,
Vadakekolathu
J
,
Tasian
SK
, et al
.
A parsimonious 3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort study
.
Blood Adv
.
2019
;
3
(
8
):
1330
-
1346
.
25.
Mallaney
C
,
Ostrander
EL
,
Celik
H
, et al
.
Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis
.
Leukemia
.
2019
;
33
(
10
):
2506
-
2521
.
26.
Huang
X
,
Qi
L
,
Lu
W
,
Li
Z
,
Li
W
,
Li
F
.
MYCN contributes to the sensitization of acute myelogenous leukemia cells to cisplatin by targeting SRY-box transcription factor 4
.
Bioengineered
.
2024
;
15
(
1
):
1997697
.
27.
Castro-Mondragon
JA
,
Riudavets-Puig
R
,
Rauluseviciute
I
, et al
.
JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D165
-
d173
.
28.
Bhat
P
,
Leggatt
G
,
Waterhouse
N
,
Frazer
IH
.
Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity
.
Cell Death Dis
.
2017
;
8
(
6
):
e2836
.
29.
Anikeeva
N
,
Fischer
NO
,
Blanchette
CD
,
Sykulev
Y
.
Extent of MHC clustering regulates selectivity and effectiveness of T cell responses
.
J Immunol
.
2019
;
202
(
2
):
591
-
597
.
30.
Chen
W
,
Yang
F
,
Wang
C
, et al
.
One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics
.
MAbs
.
2021
;
13
(
1
):
1871171
.
31.
Dustin
ML
,
Chakraborty
AK
,
Shaw
AS
.
Understanding the structure and function of the immunological synapse
.
Cold Spring Harb Perspect Biol
.
2010
;
2
(
10
):
a002311
.
32.
Seung
E
,
Xing
Z
,
Wu
L
, et al
.
A trispecific antibody targeting HER2 and T cells inhibits breast cancer growth via CD4 cells
.
Nature
.
2022
;
604
(
7905
):
E13
.
33.
Kapellos
TS
,
Bonaguro
L
,
Gemünd
I
, et al
.
Human monocyte subsets and phenotypes in major chronic inflammatory diseases
.
Front Immunol
.
2019
;
10
:
2035
.
34.
Qian
J
,
Wang
C
,
Wang
B
, et al
.
The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy
.
J Neuroinflammation
.
2018
;
15
(
1
):
290
.
35.
Naik
J
,
Themeli
M
,
de Jong-Korlaar
R
, et al
.
CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia
.
Haematologica
.
2019
;
104
(
3
):
e100
-
e103
.
36.
Lu
H
,
Weng
XQ
,
Sheng
Y
,
Wu
J
,
Xi
HM
,
Cai
X
.
Combination of midostaurin and ATRA exerts dose-dependent dual effects on acute myeloid leukemia cells with wild type FLT3
.
BMC Cancer
.
2022
;
22
(
1
):
749
.
37.
Anani
L
,
Coffre
C
,
Binet
C
,
Degenne
M
,
Domenech
J
,
Herault
O
.
Expression of CD157 and CD38 antigens on human myeloid leukaemia cells: a similar pattern of modulation with differentiating inducers
.
Acta Haematol
.
2001
;
105
(
4
):
249
-
251
.
38.
Xing
L
,
Wang
S
,
Liu
J
, et al
.
BCMA-Specific ADC MEDI2228 and daratumumab induce synergistic myeloma cytotoxicity via IFN-driven immune responses and enhanced CD38 expression
.
Clin Cancer Res
.
2021
;
27
(
19
):
5376
-
5388
.
39.
Bouker
KB
,
Skaar
TC
,
Riggins
RB
, et al
.
Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis
.
Carcinogenesis
.
2005
;
26
(
9
):
1527
-
1535
.
40.
Ohsugi
T
,
Yamaguchi
K
,
Zhu
C
, et al
.
Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells
.
Oncogene
.
2019
;
38
(
32
):
6051
-
6064
.
41.
Park
J
,
Kim
K
,
Lee
EJ
, et al
.
Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
43
):
17028
-
17033
.
42.
Boultwood
J
,
Fidler
C
,
Lewis
S
, et al
.
Allelic loss of IRF1 in myelodysplasia and acute myeloid leukemia: retention of IRF1 on the 5q- chromosome in some patients with the 5q- syndrome
.
Blood
.
1993
;
82
(
9
):
2611
-
2616
.
43.
Li
Z
,
Ma
R
,
Ma
S
, et al
.
ILC1s control leukemia stem cell fate and limit development of AML
.
Nat Immunol
.
2022
;
23
(
5
):
718
-
730
.
44.
Gruszka
AM
,
Valli
D
,
Alcalay
M
.
Wnt signalling in acute myeloid leukaemia
.
Cells
.
2019
;
8
(
11
):
1403
.
45.
Pepe
F
,
Bill
M
,
Papaioannou
D
, et al
.
Targeting Wnt signaling in acute myeloid leukemia stem cells
.
Haematologica
.
2022
;
107
(
1
):
307
-
311
.
46.
Mikesch
JH
,
Steffen
B
,
Berdel
WE
,
Serve
H
,
Müller-Tidow
C
.
The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia
.
Leukemia
.
2007
;
21
(
8
):
1638
-
1647
.
47.
Le Dieu
R
,
Taussig
DC
,
Ramsay
AG
, et al
.
Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts
.
Blood
.
2009
;
114
(
18
):
3909
-
3916
.
48.
Lim
SH
,
Worman
CP
,
Jewell
AP
,
Goldstone
AH
.
Cellular cytotoxic function and potential in acute myelogenous leukaemia
.
Leuk Res
.
1991
;
15
(
7
):
641
-
644
.
49.
Ye
M
,
Zhang
H
,
Yang
H
, et al
.
Hematopoietic differentiation is required for initiation of acute myeloid leukemia
.
Cell Stem Cell
.
2015
;
17
(
5
):
611
-
623
.
50.
Cabal-Hierro
L
,
van Galen
P
,
Prado
MA
, et al
.
Chromatin accessibility promotes hematopoietic and leukemia stem cell activity
.
Nat Commun
.
2020
;
11
(
1
):
1406
.
51.
Uy
GL
,
Aldoss
I
,
Foster
MC
, et al
.
Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia
.
Blood
.
2021
;
137
(
6
):
751
-
762
.
52.
Harrington
KH
,
Gudgeon
CJ
,
Laszlo
GS
, et al
.
The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk
.
PLoS One
.
2015
;
10
(
8
):
e0135945
.
53.
Friedrich
M
,
Henn
A
,
Raum
T
, et al
.
Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia
.
Mol Cancer Ther
.
2014
;
13
(
6
):
1549
-
1557
.
54.
van Loo
PF
,
Hangalapura
BN
,
Thordardottir
S
, et al
.
MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis
.
Expert Opin Biol Ther
.
2019
;
19
(
7
):
721
-
733
.
55.
Bonnevaux
H
,
Guerif
S
,
Albrecht
J
, et al
.
Pre-clinical development of a novel CD3-CD123 bispecific T-cell engager using cross-over dual-variable domain (CODV) format for acute myeloid leukemia (AML) treatment
.
Oncoimmunology
.
2021
;
10
(
1
):
1945803
.
56.
Yeung
YA
,
Krishnamoorthy
V
,
Dettling
D
, et al
.
An optimized full-length FLT3/CD3 bispecific antibody demonstrates potent anti-leukemia activity and reversible hematological toxicity
.
Mol Ther
.
2020
;
28
(
3
):
889
-
900
.
57.
Hoseini
SS
,
Vadlamudi
M
,
Espinosa-Cotton
M
, et al
.
T cell engaging bispecific antibodies targeting CD33 IgV and IgC domains for the treatment of acute myeloid leukemia
.
J Immunother Cancer
.
2021
;
9
(
5
):
e002509
.
58.
Pillarisetti
K
,
Powers
G
,
Luistro
L
, et al
.
Teclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma
.
Blood Adv
.
2020
;
4
(
18
):
4538
-
4549
.
59.
Yoshida
T
,
Mihara
K
,
Takei
Y
, et al
.
All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia
.
Clin Transl Immunology
.
2016
;
5
(
12
):
e116
.
60.
Cui
Q
,
Qian
C
,
Xu
N
, et al
.
CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation
.
J Hematol Oncol
.
2021
;
14
(
1
):
82
.
61.
Pogue
SL
,
Taura
T
,
Bi
M
, et al
.
Targeting attenuated interferon-alpha to myeloma cells with a CD38 antibody induces potent tumor regression with reduced off-target activity
.
PLoS One
.
2016
;
11
(
9
):
e0162472
.
62.
An
N
,
Pan
Y
,
Yang
L
, et al
.
Anti-acute myeloid leukemia activity of CD38-CAR-T cells with PI3K delta downregulation
.
Mol Pharm
.
2023
;
20
(
5
):
2426
-
2435
.
You do not currently have access to this content.
Sign in via your Institution