• A stem cell–like cell of origin imparts high GATA2 expression in AML cells.

  • GATA2 plays a direct role in modulating p53-induced apoptosis via the regulation of the MDM2 modulator RASSF4.

Abstract

Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3–driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.

1.
Schlenk
RF
,
Dohner
K
.
Impact of new prognostic markers in treatment decisions in acute myeloid leukemia
.
Curr Opin Hematol
.
2009
;
16
(
2
):
98
-
104
.
2.
Kansal
R
.
Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification
.
Cancer Biol Med
.
2016
;
13
(
1
):
41
-
54
.
3.
Klepin
HD
,
Rao
AV
,
Pardee
TS
.
Acute myeloid leukemia and myelodysplastic syndromes in older adults
.
J Clin Oncol
.
2014
;
32
(
24
):
2541
-
2552
.
4.
Zwaan
CM
,
Kolb
EA
,
Reinhardt
D
, et al
.
Collaborative efforts driving progress in pediatric acute myeloid leukemia
.
J Clin Oncol
.
2015
;
33
(
27
):
2949
-
2962
.
5.
Elsayed
AH
,
Rafiee
R
,
Cao
X
, et al
.
A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia
.
Leukemia
.
2020
;
34
(
3
):
735
-
745
.
6.
Ng
SWK
,
Mitchell
A
,
Kennedy
JA
, et al
.
A 17-gene stemness score for rapid determination of risk in acute leukaemia
.
Nature
.
2016
;
540
(
7633
):
433
-
437
.
7.
Huang
BJ
,
Smith
JL
,
Farrar
JE
, et al
.
Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia
.
Nat Commun
.
2022
;
13
(
1
):
5487
.
8.
Labbaye
C
,
Valtieri
M
,
Barberi
T
, et al
.
Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis
.
J Clin Invest
.
1995
;
95
(
5
):
2346
-
2358
.
9.
Vicente
C
,
Conchillo
A
,
Garcia-Sanchez
MA
,
Odero
MD
.
The role of the GATA2 transcription factor in normal and malignant hematopoiesis
.
Crit Rev Oncol Hematol
.
2012
;
82
(
1
):
1
-
17
.
10.
Liu
XL
,
Yuan
JY
,
Zhang
JW
,
Zhang
XH
,
Wang
RX
.
Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage
.
J Leukoc Biol
.
2007
;
82
(
4
):
986
-
1002
.
11.
Katsumura
KR
,
Bresnick
EH
;
GATA Factor Mechanisms Group
.
The GATA factor revolution in hematology
.
Blood
.
2017
;
129
(
15
):
2092
-
2102
.
12.
Tsai
FY
,
Keller
G
,
Kuo
FC
, et al
.
An early haematopoietic defect in mice lacking the transcription factor GATA-2
.
Nature
.
1994
;
371
(
6494
):
221
-
226
.
13.
Pimanda
JE
,
Göttgens
B
.
Gene regulatory networks governing haematopoietic stem cell development and identity
.
Int J Dev Biol
.
2010
;
54
(
6-7
):
1201
-
1211
.
14.
Menendez-Gonzalez
JB
,
Vukovic
M
,
Abdelfattah
A
, et al
.
Gata2 as a crucial regulator of stem cells in adult hematopoiesis and acute myeloid leukemia
.
Stem Cell Rep
.
2019
;
13
(
2
):
291
-
306
.
15.
Rodrigues
NP
,
Janzen
V
,
Forkert
R
, et al
.
Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis
.
Blood
.
2005
;
106
(
2
):
477
-
484
.
16.
Persons
DA
,
Allay
JA
,
Allay
ER
, et al
.
Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis
.
Blood
.
1999
;
93
(
2
):
488
-
499
.
17.
Nandakumar
SK
,
Johnson
K
,
Throm
SL
,
Pestina
TI
,
Neale
G
,
Persons
DA
.
Low-level GATA2 overexpression promotes myeloid progenitor self-renewal and blocks lymphoid differentiation in mice
.
Exp Hematol
.
2015
;
43
(
7
):
565
-
577.e1-10
.
18.
Bresnick
EH
,
Jung
MM
,
Katsumura
KR
.
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis?
.
Blood Adv
.
2020
;
4
(
18
):
4584
-
4592
.
19.
Dickinson
RE
,
Milne
P
,
Jardine
L
, et al
.
The evolution of cellular deficiency in GATA2 mutation
.
Blood
.
2014
;
123
(
6
):
863
-
874
.
20.
Wlodarski
MW
,
Hirabayashi
S
,
Pastor
V
, et al
.
Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents
.
Blood
.
2016
;
127
(
11
):
1387
-
1397
. quiz 1518.
21.
Donadieu
J
,
Lamant
M
,
Fieschi
C
, et al
.
Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients
.
Haematologica
.
2018
;
103
(
8
):
1278
-
1287
.
22.
Zhang
SJ
,
Ma
LY
,
Huang
QH
, et al
.
Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
6
):
2076
-
2081
.
23.
Lentjes
MH
,
Niessen
HE
,
Akiyama
Y
,
de Bruïne
AP
,
Melotte
V
,
van Engeland
M
.
The emerging role of GATA transcription factors in development and disease
.
Expert Rev Mol Med
.
2016
;
18
:
e3
.
24.
Shih
AH
,
Jiang
Y
,
Meydan
C
, et al
.
Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia
.
Cancer Cell
.
2015
;
27
(
4
):
502
-
515
.
25.
Katerndahl
CDS
,
Rogers
ORS
,
Day
RB
, et al
.
Tumor suppressor function of Gata2 in acute promyelocytic leukemia
.
Blood
.
2021
;
138
(
13
):
1148
-
1161
.
26.
Vicente
C
,
Vazquez
I
,
Conchillo
A
, et al
.
Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities
.
Leukemia
.
2012
;
26
(
3
):
550
-
554
.
27.
Luesink
M
,
Hollink
IHIM
,
van der Velden
VHJ
, et al
.
High GATA2 expression is a poor prognostic marker in pediatric acute myeloid leukemia
.
Blood
.
2012
;
120
(
10
):
2064
-
2075
.
28.
Xie
HM
,
Gao
L
,
Wang
N
, et al
.
[GATA-2 gene overexpression and its clinical significance in acute myeloid leukemia with AML1/ETO fusion gene]
.
Sichuan Da Xue Xue Bao Yi Xue Ban
.
2014
;
45
(
4
):
664
-
669
.
29.
Robbins
DJ
,
Pavletich
TS
,
Patil
AT
, et al
.
Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia
.
Blood Adv
.
2024
;
8
(
1
):
80
-
92
.
30.
Charles
MA
,
Saunders
TL
,
Wood
WM
, et al
.
Pituitary-specific Gata2 knockout: Effects on gonadotrope and thyrotrope Function
.
Mol Endocrinol
.
2006
;
20
(
6
):
1366
-
1377
.
31.
Im
H
,
Grass
JA
,
Johnson
KD
, et al
.
Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
47
):
17065
-
17070
.
32.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
33.
Zhang
Y
,
Liu
T
,
Meyer
CA
, et al
.
Model-based analysis of ChIP-Seq (MACS)
.
Genome Biol
.
2008
;
9
(
9
):
R137
.
34.
Amemiya
HM
,
Kundaje
A
,
Boyle
AP
.
The ENCODE Blacklist: identification of problematic regions of the genome
.
Sci Rep
.
2019
;
9
(
1
):
9354
.
35.
Heinz
S
,
Benner
C
,
Spann
N
, et al
.
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
.
Mol Cell
.
2010
;
38
(
4
):
576
-
589
.
36.
Shen
L
,
Shao
N
,
Liu
X
,
Nestler
E
.
ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases
.
BMC Genomics
.
2014
;
15
:
284
.
37.
Robinson
JT
,
Thorvaldsdottir
H
,
Winckler
W
, et al
.
Integrative genomics viewer
.
Nat Biotechnol
.
2011
;
29
(
1
):
24
-
26
.
38.
Kohlmann
A
,
Kipps
TJ
,
Rassenti
LZ
, et al
.
An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase
.
Br J Haematol
.
2008
;
142
(
5
):
802
-
807
.
39.
Rapin
N
,
Bagger
FO
,
Jendholm
J
, et al
.
Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients
.
Blood
.
2014
;
123
(
6
):
894
-
904
.
40.
Chen
C
,
Yu
W
,
Alikarami
F
, et al
.
Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia
.
Blood
.
2022
;
139
(
14
):
2198
-
2211
.
41.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
42.
Steinauer
N
,
Guo
C
,
Huang
C
, et al
.
Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML
.
Blood Adv
.
2019
;
3
(
9
):
1379
-
1393
.
43.
Lambo
S
,
Trinh
DL
,
Ries
RE
, et al
.
A longitudinal single-cell atlas of treatment response in pediatric AML
.
Cancer Cell
.
2023
;
41
(
12
):
2117
-
2135.e12
.
44.
Marcucci
G
,
Baldus
CD
,
Ruppert
AS
, et al
.
Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study
.
J Clin Oncol
.
2005
;
23
(
36
):
9234
-
9242
.
45.
Stefan
Gs
,
Schlenk
RF
,
Eiwen
K
, et al
.
Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias
.
Blood
.
2011
;
118
(
21
):
1441
.
46.
Cabezas-Wallscheid
N
,
Klimmeck
D
,
Hansson
J
, et al
.
Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis
.
Cell Stem Cell
.
2014
;
15
(
4
):
507
-
522
.
47.
Tibor Fekete
J
,
Győrffy
B
.
A unified platform enabling biomarker ranking and validation for 1562 drugs using transcriptomic data of 1250 cancer cell lines
.
Comput Struct Biotechnol J
.
2022
;
20
:
2885
-
2894
.
48.
Xu
J
,
Shao
Z
,
Li
D
, et al
.
Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions
.
Mol Cell
.
2015
;
57
(
2
):
304
-
316
.
49.
Jung
MM
,
Shen
S
,
Botten
GA
, et al
.
Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks
.
J Clin Invest
.
2023
;
133
(
7
):
e162685
.
50.
Wu
X
,
Bayle
JH
,
Olson
D
,
Levine
AJ
.
The p53-mdm-2 autoregulatory feedback loop
.
Genes Dev
.
1993
;
7
(
7a
):
1126
-
1132
.
51.
Stoner
SA
,
Liu
KTH
,
Andrews
ET
, et al
.
The RUNX1-ETO target gene RASSF2 suppresses t(8;21) AML development and regulates Rac GTPase signaling
.
Blood Cancer J
.
2020
;
10
(
2
):
16
.
52.
Kashuba
E
,
Yurchenko
M
,
Yenamandra
SP
, et al
.
Epstein-Barr virus-encoded EBNA-5 forms trimolecular protein complexes with MDM2 and p53 and inhibits the transactivating function of p53
.
Int J Cancer
.
2011
;
128
(
4
):
817
-
825
.
53.
Liu
J
,
Chen
Y
,
Yu
L
,
Yang
L
.
Mechanisms of venetoclax resistance and solutions
.
Front Oncol
.
2022
;
12
:
1005659
.
54.
Przedborski
M
,
Sharon
D
,
Cathelin
S
,
Chan
S
,
Kohandel
M
.
An integrative systems biology approach to overcome venetoclax resistance in acute myeloid leukemia
.
PLoS Comput Biol
.
2022
;
18
(
9
):
e1010439
.
55.
Grembecka
J
,
He
S
,
Shi
A
, et al
.
Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia
.
Nat Chem Biol
.
2012
;
8
(
3
):
277
-
284
.
56.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al
.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
57.
Konopleva
MY
,
Röllig
C
,
Cavenagh
J
, et al
.
Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial
.
Blood Adv
.
2022
;
6
(
14
):
4147
-
4156
.
58.
Italiano
A
,
Miller
WH
,
Blay
JY
, et al
.
Phase I study of daily and weekly regimens of the orally administered MDM2 antagonist idasanutlin in patients with advanced tumors
.
Invest New Drugs
.
2021
;
39
(
6
):
1587
-
1597
.
59.
Kropp
EM
,
Li
Q
.
Mechanisms of resistance to targeted therapies for relapsed or refractory acute myeloid leukemia
.
Exp Hematol
.
2022
;
111
:
13
-
24
.
60.
Daver
N
,
Wei
AH
,
Pollyea
DA
,
Fathi
AT
,
Vyas
P
,
DiNardo
CD
.
New directions for emerging therapies in acute myeloid leukemia: the next chapter
.
Blood Cancer J
.
2020
;
10
(
10
):
107
.
61.
Tsai
FY
,
Orkin
SH
.
Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation
.
Blood
.
1997
;
89
(
10
):
3636
-
3643
.
62.
de Pater
E
,
Kaimakis
P
,
Vink
CS
, et al
.
Gata2 is required for HSC generation and survival
.
J Exp Med
.
2013
;
210
(
13
):
2843
-
2850
.
63.
Gao
X
,
Johnson
KD
,
Chang
YI
, et al
.
Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo
.
J Exp Med
.
2013
;
210
(
13
):
2833
-
2842
.
64.
Ling
KW
,
Ottersbach
K
,
van Hamburg
JP
, et al
.
GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells
.
J Exp Med
.
2004
;
200
(
7
):
871
-
882
.
65.
Bonadies
N
,
Foster
SD
,
Chan
WI
, et al
.
Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia
.
PLoS One
.
2011
;
6
(
1
):
e16330
.
66.
Kellaway
SG
,
Potluri
S
,
Keane
P
, et al
.
Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth
.
Nat Commun
.
2024
;
15
(
1
):
1359
.
67.
Li
K
,
Du
Y
,
Cai
Y
, et al
.
Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia
.
Leukemia
.
2023
;
37
(
2
):
308
-
325
.
68.
Yang
L
,
Sun
H
,
Cao
Y
, et al
.
GATA2 inhibition sensitizes acute myeloid leukemia cells to chemotherapy
.
PLoS One
.
2017
;
12
(
1
):
e0170630
.
69.
Cai
SF
,
Chu
SH
,
Goldberg
AD
, et al
.
Leukemia cell of origin influences apoptotic priming and sensitivity to LSD1 inhibition
.
Cancer Discov
.
2020
;
10
(
10
):
1500
-
1513
.
70.
Stavropoulou
V
,
Kaspar
S
,
Brault
L
, et al
.
MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome
.
Cancer Cell
.
2016
;
30
(
1
):
43
-
58
.
71.
Kataoka
K
,
Sato
T
,
Yoshimi
A
, et al
.
Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity
.
J Exp Med
.
2011
;
208
(
12
):
2403
-
2416
.
72.
van der Weyden
L
,
Adams
DJ
.
The Ras-association domain family (RASSF) members and their role in human tumourigenesis
.
Biochim Biophys Acta
.
2007
;
1776
(
1
):
58
-
85
.
73.
Song
MS
,
Song
SJ
,
Kim
SY
,
Oh
HJ
,
Lim
DS
.
The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex
.
EMBO J
.
2008
;
27
(
13
):
1863
-
1874
.
74.
Volodko
N
,
Gordon
M
,
Salla
M
,
Ghazaleh
HA
,
Baksh
S
.
RASSF tumor suppressor gene family: biological functions and regulation
.
FEBS Lett
.
2014
;
588
(
16
):
2671
-
2684
.
75.
Kudo
T
,
Ikeda
M
,
Nishikawa
M
, et al
.
The RASSF3 candidate tumor suppressor induces apoptosis and G1–S cell-cycle arrest via p53
.
Cancer Res
.
2012
;
72
(
11
):
2901
-
2911
.
76.
Messikommer
A
,
Seipel
K
,
Byrne
S
,
Valk
PJM
,
Pabst
T
,
Luedtke
NW
.
RNA targeting in acute myeloid leukemia
.
ACS Pharmacol Transl Sci
.
2020
;
3
(
6
):
1225
-
1232
.
You do not currently have access to this content.
Sign in via your Institution