• Broad-spectrum ABXs significantly alter the gut and blood microbial metabolome in patients receiving CD19 CAR-T therapy.

  • Broad-spectrum ABXs deplete metabolically active commensal bacteria whose metabolites are essential for enhancing CAR-T efficacy.

Abstract

Antibiotic (ABX)–induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) therapies. In this study, we observed that prior exposure to broad-spectrum ABXs with extended anaerobic coverage such as piperacillin-tazobactam and meropenem was associated with worse anti-CD19 CAR-T therapy survival outcomes in patients with large B-cell lymphoma (N = 422) than other ABX classes. In a discovery subset of these patients (n = 67), we found that the use of these ABXs was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n = 58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery, n = 40; validation, n = 28). These findings were recapitulated in an immune-competent CAR-T mouse model, in which meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-Ts, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy. This trial was registered at www.clinicaltrials.gov as #NCT06218602.

1.
Zimmer
AJ
,
Freifeld
AG
.
Optimal management of neutropenic fever in patients with cancer
.
J Oncol Pract
.
2019
;
15
(
1
):
19
-
24
.
2.
Lichtman
JS
,
Ferreyra
JA
,
Ng
KM
,
Smits
SA
,
Sonnenburg
JL
,
Elias
JE
.
Host-microbiota interactions in the pathogenesis of antibiotic-associated diseases
.
Cell Rep
.
2016
;
14
(
5
):
1049
-
1061
.
3.
Dethlefsen
L
,
Relman
DA
.
Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
suppl 1
):
4554
-
4561
.
4.
Gopalakrishnan
V
,
Spencer
CN
,
Nezi
L
, et al
.
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
.
Science
.
2018
;
359
(
6371
):
97
-
103
.
5.
Pinato
DJ
,
Howlett
S
,
Ottaviani
D
, et al
.
Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer
.
JAMA Oncol
.
2019
;
5
(
12
):
1774
-
1778
.
6.
Weber
D
,
Jenq
RR
,
Peled
JU
, et al
.
Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
5
):
845
-
852
.
7.
Smith
M
,
Dai
A
,
Ghilardi
G
, et al
.
Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy
.
Nat Med
.
2023
;
28
(
11
):
713
-
723
.
8.
Stein-Thoeringer
CK
,
Saini
NY
,
Zamir
E
, et al
.
A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy
.
Nat Med
.
2023
;
29
(
4
):
906
-
916
.
9.
Shono
Y
,
Docampo
MD
,
Peled
JU
, et al
.
Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice
.
Sci Transl Med
.
2016
;
8
(
339
):
339ra71
.
10.
Luu
M
,
Pautz
S
,
Kohl
V
, et al
.
The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes
.
Nat Commun
.
2019
;
10
(
1
):
760
.
11.
Luu
M
,
Riester
Z
,
Baldrich
A
, et al
.
Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer
.
Nat Commun
.
2021
;
12
(
1
):
4077
.
12.
Koh
A
,
De Vadder
F
,
Kovatcheva-Datchary
P
,
Bäckhed
F
.
From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites
.
Cell
.
2016
;
165
(
6
):
1332
-
1345
.
13.
Fahrmann
JF
,
Saini
NY
,
Chia-Chi
C
, et al
.
A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma
.
Cell Rep Med
.
2022
;
3
(
11
):
100720
.
14.
Davila
ML
,
Kloss
CC
,
Gunset
G
,
Sadelain
M
.
CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia
.
PLoS One
.
2013
;
8
(
4
):
e61338
.
15.
Ghosh
A
,
Smith
M
,
James
SE
, et al
.
Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity
.
Nat Med
.
2017
;
23
(
2
):
242
-
249
.
16.
Li
G
,
Boucher
JC
,
Kotani
H
, et al
.
4-1BB enhancement of CAR T function requires NF-kappaB and TRAFs
.
JCI Insight
.
2018
;
3
(
18
):
e121322
.
17.
Hayase
E
,
Hayase
T
,
Jamal
MA
, et al
.
Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease
.
Cell
.
2022
;
185
(
20
):
3705
-
3719.e14
.
18.
Viaud
S
,
Saccheri
F
,
Mignot
G
, et al
.
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
.
Science
.
2013
;
342
(
6161
):
971
-
976
.
19.
Mirji
G
,
Worth
A
,
Bhat
SA
, et al
.
The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer
.
Sci Immunol
.
2022
;
7
(
75
):
eabn0704
.
20.
Rangan
P
,
Mondino
A
.
Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy
.
J Immunother Cancer
.
2022
;
10
(
7
):
e004147
.
21.
Trompette
A
,
Gollwitzer
ES
,
Pattaroni
C
, et al
.
Dietary fiber confers protection against flu by shaping Ly6c− patrolling monocyte hematopoiesis and CD8+ T cell metabolism
.
Immunity
.
2018
;
48
(
5
):
992
-
1005.e8
.
22.
Luu
M
,
Weigand
K
,
Wedi
F
, et al
.
Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate
.
Sci Rep
.
2018
;
8
(
1
):
14430
.
23.
Park
J
,
Kim
M
,
Kang
SG
, et al
.
Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway
.
Mucosal Immunol
.
2015
;
8
(
1
):
80
-
93
.
24.
Zhang
Y
,
Kurupati
R
,
Liu
L
, et al
.
Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy
.
Cancer Cell
.
2017
;
32
(
3
):
377
-
391.e9
.
25.
Montassier
E
,
Gastinne
T
,
Vangay
P
, et al
.
Chemotherapy-driven dysbiosis in the intestinal microbiome
.
Aliment Pharmacol Ther
.
2015
;
42
(
5
):
515
-
528
.
26.
Yu
T
,
Guo
F
,
Yu
Y
, et al
.
Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy
.
Cell
.
2017
;
170
(
3
):
548
-
563.e16
.
27.
Alexander
JL
,
Wilson
ID
,
Teare
J
,
Marchesi
JR
,
Nicholson
JK
,
Kinross
JM
.
Gut microbiota modulation of chemotherapy efficacy and toxicity
.
Nat Rev Gastroenterol Hepatol
.
2017
;
14
(
6
):
356
-
365
.
28.
Viaud
S
,
Saccheri
F
,
Mignot
G
, et al
.
The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
.
Science
.
2013
;
342
(
6161
):
971
-
976
.
29.
Vétizou
M
,
Pitt
JM
,
Daillère
R
, et al
.
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
.
Science
.
2015
;
350
(
6264
):
1079
-
1084
.
30.
Iida
N
,
Dzutsev
A
,
Stewart
CA
, et al
.
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
.
Science
.
2013
;
342
(
6161
):
967
-
970
.
31.
Stein-Thoeringer
CK
,
Nichols
KB
,
Lazrak
A
, et al
.
Lactose drives Enterococcus expansion to promote graft-versus-host disease
.
Science
.
2019
;
366
(
6469
):
1143
-
1149
.
32.
Jenq
RR
,
Taur
Y
,
Devlin
SM
, et al
.
Intestinal blautia is associated with reduced death from graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2015
;
21
(
8
):
1373
-
1383
.
33.
Arpaia
N
,
Campbell
C
,
Fan
X
, et al
.
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
.
Nature
.
2013
;
504
(
7480
):
451
-
455
.
34.
Keeney
KM
,
Finlay
BB
.
Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut
.
Curr Opin Microbiol
.
2011
;
14
(
1
):
92
-
98
.
35.
Bachem
A
,
Makhlouf
C
,
Binger
KJ
, et al
.
Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells
.
Immunity
.
2019
;
51
(
2
):
285
-
297.e5
.
36.
Corrêa-Oliveira
R
,
Fachi
JL
,
Vieira
A
,
Sato
FT
,
Vinolo
MA
.
Regulation of immune cell function by short-chain fatty acids
.
Clin Transl Immunology
.
2016
;
5
(
4
):
e73
.
37.
Smith
PM
,
Howitt
MR
,
Panikov
N
, et al
.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
.
Science
.
2013
;
341
(
6145
):
569
-
573
.
38.
Furusawa
Y
,
Obata
Y
,
Fukuda
S
, et al
.
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
.
Nature
.
2013
;
504
(
7480
):
446
-
450
.
You do not currently have access to this content.
Sign in via your Institution